Vehicular Integration for C4ISR/EW Interoperability (VICTORY)

Briefing to the Training Community

I/ITSEC 2012
4 December 2012
Meeting Objectives

- Inform the Training Community
 - What is VICTORY
 - Why should Training Community care
 - How to get involved

GOAL: Begin to establish an IPT (government & industry) to develop training portions of the VICTORY architecture and specification (2013 release)
Addressing Training

- Two new sections of VICTORY specification address training
 - Mission Recorder – how data is recorded (included in latest release)
 - Embedded Training Interface – addresses what data is recorded (2013 release, AI_CP_076)

- Establishing IPT to develop Embedded Training Interface section
 - Government and Industry

- Multifunction Vehicle Port (MFVP) enables future interface to VICTORY Data Bus
 - MFVP Interface Standard v1.0 available at www.lt2portal.org

Training Adds to Problems Driving VICTORY

- Hardware Redundancy
- Limited Information Sharing
- Complex cabling
- Large system re-set and life cycle costs
- Limited Ability to support CP mission sets
Why should Training Community care about VICTORY?

- VICTORY is gaining momentum
 - VICTORY compliance included in recent acquisitions
 - Bradley and Abrams ECP’s call out VICTORY compliance
 - PEO GCS guidance for training – leverage VICTORY
- ~125 participants at December F2F meeting, 200+ members
- Identified by COE as a critical enabler
 - Key role in Real Time Safety Critical Embedded CE
 - Mounted CE will be changing ICDs to be VICTORY compliant (reps at December VICTORY F2F)
Army Common Operating Environment (COE)

I/ITSEC 2012
4 December 2012
COE: Apps & Services
Vision and Computing Environments (CE)

Organize Computing Environments

Clustering similar systems based on mission environments to facilitate implementation
- Data Center/Cloud/Generating Force CE: PEO EIS
- Command Post CE: PEO IEWS/PEO C3T
- Mounted CE : PEO C3T
- Mobile/Hand Held CE: PEO Soldier
- Sensor CE: PEO IEWS
- Real-time/Safety Critical/Embedded CE: PEO Aviation

Establish the Platform IPT

What’s being integrated on our platforms – when, how, by whom
- Soldier as a Platform: PEO, Soldier
- Aviation Platforms: PEO, Aviation
- Ground Platforms-Combat: PEO CS&CSS
- Ground Platforms-Tactical: PEO GCS
- Ground Platforms-Fires: PEO M&S
- Command Posts: PEO C3T
- Forward Operating Base Installation/Fixed Base: PEO EIS

Control Points (CPs) define interfaces between CEs
ITE Cross Cutting Capabilities:
- Virtual/Constructive Sim/Stim
- Scenario/Exercise Control
- Live Training Instrumentation Systems

Control Point/Interface Specs:
- Training/Test Instrumentation
- Appended TESS
- Instrumentation Interface with FACE
- Multifunction Vehicle Port (MFVP)
- Sim to Mission Command Interfaces
- MILES Comms Codes

CE Compliant/Embedded Capabilities:
- Target Control
- Training Standards/Capabilities in VICTORY:
 - IS-TESS
 - PAN
 - MFVP
- TaaS – Training as a Service in the Cloud

Examples

Training and the COE (DRAFT)
Embedded Training

Vision
For Embedded Training
12 June 2012
Version 37

- Software product line approach
- Software re-use
- Composibility
- Portable
- Modular
- Scalable
- Extendable
- Open standards

FACE & VICTORY are critical enablers for COE as part of the Real Time/Safety Critical/Embedded CE

FACE

- Future Airborne Capability Environment (FACE)
- Standard for aviation systems

VICTORY

- Vehicular Integration for C4ISR/EW Interoperability (VICTORY)
- Standard for ground vehicles
- Addresses Embedded Training
 - Mission Recorder (August 2012)
 - Embedded Training (Spring 2013)
- PEO STRI Initiatives
 - Multifunction Vehicle Port Standard
 - Live Training Engagement Composition
Vehicular Integration for C4ISR/EW Interoperability (VICTORY)

Kase Saylor
I/ITSEC 2012
4 December 2012
VICTORY 101 – Background

28 June 2012

A converged modular architecture for vehicle/electronic systems interoperability in a modular expeditionary Army at War
Motivation: problems driving VICTORY
Approach: how we are moving toward a solution
VICTORY framework: what we are producing

BACKGROUND
An Army SoS Problem: C4ISR/EW Integration in Ground Vehicles

Traditional Approach

"Bolt On" Mission Equipment Integration

Proposed Approach

VICTORY Data Bus enables interoperability across C4ISR/EW and platform systems

VICTORY Benefits

1) Reduces SWaP-C impact
2) Systems interoperate with each other via the VICTORY Data Bus (VDB)
3) Enables additional capabilities
4) Enabler for Commonality
VICTORY Goals

• Eliminate, where possible, the practice of “Bolt On” systems
• Significantly reduce SWaP-C
• Support new capabilities
• Reduce overall life cycle costs
• Maximize C4ISR/EW portability
• Support current & future IA requirements
 – Enable “defense in depth” security designs
 – Support many IA requirements and levels
• Integrate with current-force systems
 – Define a path toward network-centricity
Late ‘06 – “In-Dash” Concept formed by PEO C3T, PEO CS&CSS and CERDEC – *Loose Confederation of the Willing*

Management Formalization

Late ‘11 & Early ‘12 – Transition MOA signed and Management Directive signed to formally establish the *VICTORY Executive Steering Group (ESG)*, the *VICTORY Standards Support Office (VSSO)* and cost share strategy

Major Milestones

- **2006**
 - Late ‘06 – “In-Dash” Concept formed by PEO C3T, PEO CS&CSS and CERDEC – *Loose Confederation of the Willing*

- **2007**
 - Jul ‘07 – JLTV Tech Dev Phase Specification

- **2008**
 - Oct ‘09 – Stryker Spiral 1 Demo

- **2009**
 - Jun/Jul ‘10 – TWV Survivability ATO Demo

- **2010**
 - Apr ‘10 – Architecture A Release
 - Jul ‘10 – Experimental Spec V0.5 Release

- **2011**
 - Apr ‘11 – MRAP Digital Backbone Convergence Demo
 - Jan ‘12 – Architecture A1 and Standard Spec V1.1 Release
 - May ‘10 – Standards Body Kick-Off

- **2012**
 - Jul ‘11 – Standard Spec V1.0 Release
 - Apr ‘12 – Standard Spec V1.2 Release

- **2013**

- **2014**

- **2012 & Early 2013**

Acquisition Adoption

- **Sep-Nov ‘11** – RFPs for Abrams & Bradley ECPs

Vehicular Integration for C4ISR/EW Interoperability

14
VICTORY focuses on adopting/adapting/authoring, validating and managing a Single Authoritative Framework and Standards for vehicular integration.
Standards Body

Working Groups build the standards bottom up

- Draw on both Government and Industry expertise
- Adopt, adapt and author standards with formal definition and suitable use cases
- Reiterate standards to reach maturity
- Ensure standards are open
VICTORY Technical Approach

- **Add a data bus (network) to vehicles**
 - Integrate C4ISR/EW systems, interface with other electronic systems
 - Provide the plumbing for systems and components to interoperate (work together cooperatively)

- **Provide shared hardware and services as part of the data bus**
 - Shared processing and user interface hardware
 - Shared services
 - Management: configuration, control, health reporting
 - Position, orientation, direction of travel

- **Define components with standard, open network-based messaging interfaces**
 - IA components: protect data & control access
 - C4ISR/EW components: interoperate via network messages
 - Platform systems: interface with VDB via network messages
VICTORY Architectural Tenets

• Specify “on-the-wire” network-based interfaces

• Mature specifications into standards
 – Validate the architecture & standards through experiments
 – Prove that architecture and standards are reasonable and effective

• Keep specifications open to the ground vehicle community

• Treat Information Assurance (IA) as a vital

• Keep time critical processing integrated with sensors
 – Publication on data bus can be secondary (e.g. high-rate video)

• Enable open competition

• Identify roadmap from current to future architectures
 – Include current-force systems in the architecture
 – Evolve toward network-centric C4ISR/EW
Definition of Open

1. Not controlled by a single vendor
2. Not tied to a specific vendor’s platform (platform independent)
3. Available for implementation by multiple sources
4. Usable without royalties or non-disclosure agreements (NDAs)
5. Published and managed by a standards body

Open places power in the procurement process with the Army
VICTORY Scope

- VICTORY provides enablers for integration and interoperability between electronics systems on Army ground vehicle platforms
 - Enables integration of C4ISR/EW systems
 - Interface to the sensors, many components and systems
 - Enables interfaces to (bridges) to platform systems
 - Interface to platform systems

- **Scope / boundaries of current VICTORY framework**
 - Stops at the edge of the platform network
 - Interface to satellite, terrestrial, dismounts, mobile sensors
 - Interface to data/voice radio
 - Stops at the edge of platform systems
 - Interface to automotive, weapons, power distribution, logistics, protection
 - Does not integrate safety critical systems
 - Does not define common physical components or software applications
What is VICTORY?

VICTORY *IS or DOES*

- Provide design guideline input
- Partnership
- Scalable leading to multiple price points for affordability
- Provide “build to” guidelines
- Seeking convergence
- A System of Systems Engineering (SoSE) initiative
- Provide input to platform and mission equipment PMs and Industry solicitations
- A framework providing an architecture, standard specifications, and reference designs

VICTORY *is NOT*

- A vehicle design
- A PEO C3T initiative
- Cost prohibitive
- Hardware
- In conflict with other efforts
- A Program of Record
- Solicited through VICTORY RFP/BAA
- A runtime environment, middleware library, or software package
Architecture Development Approach

• Goal: network-based architecture for integration of electronic systems on Army ground vehicles

• Took a bottom-up approach
 – Begin with current force C4ISR and EW systems and components
 – Identify emerging C4ISR & EW technologies, sensors, and applications
 – Identify key platform systems for which network interfaces are needed
 – Identify common functions and opportunities for consolidation
 – Develop conceptual framework

• First identified component types representing current force systems
 – Top-down, clean slate approach would not have been evolutionary

• Next identified component types representing new capabilities being integrated into vehicles (video, recording)
VICTORY Products and Services

Products

- **Architecture**
 - Version A1 released Jan 17, 2012
- **Standard Specifications**
 - Version V1.1 released Jan 31, 2012
- **Reference Designs**
 - First release scheduled May 2012
- **Initial Validation Artifacts**
 - Published as completed
- **Reference Software Library**
 - First release, March 2012
- **Verification Toolkit**
 - SW tools for compliance tests
 - First release scheduled June 2012

Services

- **Lead/Coordinate the VICTORY Standards Body**
- **Coordination and Outreach Activities with PMs**
 - Cross-walking program performance specification with VICTORY specifications
 - Drafting VICTORY-related PWS language for PM RFPs
 - Synchronizing other on-going initiatives (e.g. COE, FACE, CBM)
Terminology

- **Architecture**: a conceptual framework defining overall concepts and terms, identifying elements to be standardized, including component types, their interfaces, design patterns and common structures.
- **Specifications**: a document containing specifications of varying maturity levels, which identify the technical details of system (application) and component interfaces.
- **Reference Designs**: documents describing how the specifications could be deployed.
- **Standard**: a specification at the “proposed standard” or higher level of maturity.

Maturity level: a label that identifies the level of maturity of a specification, which varies over time. Maturity levels include:
- Preliminary
- Informational
- Experimental
- Proposed Standard
- Draft Standard
- Final Standard

VICTORY specifications document:
- Versioned [major].[minor] (e.g. 1.0)
- Aggregates many specifications
- Each specification has an independent maturity level

Specification Types include:
- Component Specifications
- Interface Specifications
- Reference Design Specs
- Application Profile Specs
VICTORY Background - Conclusions

• VSSO aims to reduce SW&P and increase capabilities

• VICTORY is creating a framework, consisting of
 – Network-based architecture
 – Validated interface specifications
 – Reference designs
 – Reference software library
 – Verification toolkit

• VSSO is working with programs of record to transition specifications into vehicles and products

• For more information contact:
 – Grace Xiang, Deputy Director, VSSO
 – qiping.xiang@us.army.mil
 – www.victory-standards.org
VICTORY 101 – Process

March 12, 2012

A converged modular architecture for vehicle/electronic systems interoperability in a modular expeditionary Army at War
Top-level process: architecture and specification development
Working group process: change proposals
Maturation process: architecture and specifications validation

VICTORY DEVELOPMENT AND MATURATION PROCESS OVERVIEW
VICTORY Working Groups

• Three specification development working groups
 – Data bus working group (DBWG)
 – Information assurance working group (IAWG)
 – Application interfaces working group (AIWG)

• Working groups are made up of
 – Government organizations
 – Product vendors
 – Vehicle and system integrators

• Working group tasks
 – Develop specifications for the interfaces identified by the architecture
 – Receive and address feedback from validation activities
Top-Level Specification Process

Architecture Document → Interfaces & Components To Specify

Change Proposal Process → Specification Document

Working Groups Change Proposal Process → Priorities

Validation
- Specifications created through a Change Proposal (CP) process

- Creates specifications at the “experimental” maturity level
 - Even when adopting existing technologies

- “Experimental” maturity level
 - WG has leveraged research, previous experience, best practices, etc.
 - “Paper” level analysis has been done by working group
 - Specifications are detailed enough to develop a prototype
Maturation process: architecture and specifications validation

MATURATION OF SPECIFICATIONS
Definitions

• **VSSO**: VICTORY Standards Support Office

• **Validation**: The execution of experiments to determine whether a specification is mature enough for use in varying contexts
 – **Initial Validation**: Experiments to mature to proposed standard level
 – **Additional Validation**: Experiments to mature to draft standard level

• **Verification**: The determination of whether a particular hardware or software component complies with the VICTORY specifications

• **Certification**: The acceptance of the compliance by an authority
Specification Maturity

- **“Maturity Level”**: label identifying how “well proven” a specification is

- Specifications are matured over time through “validation”

- Maturity levels include:
 - Preliminary Specification
 - Informational Specification
 - Experimental Specification
 - Proposed Standard Specification
 - Draft Standard Specification
 - VICTORY Standard Specification

- **“Standard”**: a specification at “Standards Track” level of maturity

- Individual specifications have independent maturity levels
 - {Preliminary | Informational | Experimental} Specification
 - {Proposed | Draft | Final} Standard Specification
• Maturity levels include:
 – Preliminary Specification
 – Informational Specification
 – Experimental Specification
 – Proposed Standard Specification
 – Draft Standard Specification
 – Standard Specification

* Deployment by a program constitutes additional validation
Version A1 Content
VICTORY Data Bus
Component and System Types \(\rightarrow\) Interface Specifications

VICTORY ARCHITECTURE OVERVIEW
VICTORY Architecture

• The VICTORY architecture provides a managed framework onto which the specifications are developed

• Architecture defines
 – System types, component types, interfaces

• Current Documents
 – Aligned with version 1.1 of the specifications, published January 2012

• The following walks through Architecture A1
 – VICTORY Data Bus (VDB)
 – VDB component types
 – C4ISR/EW systems and component types
 – Platform system types
• **VICTORY Data Bus (VDB)**
 – Central structure of the VICTORY architecture

• An instance of a VDB provides...

• **Network infrastructure**
 – Data transport, routing, QoS

• **Shared data services**
 – Time synchronization
 – Position, orientation, direction of travel

• **Shared HW**
 – Processing resources
 – Displays and user interface devices
• VICTORY Data Bus (VDB)
 – Central structure of the VICTORY architecture

• An instance of a VDB provides...

• Management services
 – At VDB level: interfaces to manage system as a composite
 – At system level: interfaces to manage integrated and interfaced systems
 – At component level: interfaces to manage individual components
• VICTORY Data Bus (VDB)
 – Central structure of the VICTORY architecture
• An instance of a VDB provides...
• Information assurance
 – Standard components, interfaces, and patterns to support many IA styles
• Protection from network attacks
• Data protection
 – Protection of data at rest & in transit
• Policy-based access control
 – Authentication of entities and authorization for access to resources
VICTORY Data Bus

• VICTORY Data Bus (VDB)
 – Central structure of the VICTORY architecture

• An instance of a VDB provides...

• Open network-based interfaces
 – Component level interfaces
 • C4ISR/EW system components
 – System level interfaces
 • C4ISR/EW systems
 • Platform systems
VDB Context

C4ISR/EW Systems
- Audio & Textual Communications
- Video & Imagery SA
- Threat Detection & Reporting
- Mission Recording
- Situational Awareness & C2
- Extra-Vehicle Network Interface
- Electronic Warfare

VICTORY Data Bus (VDB)
- Data Protection
- Network Infrastructure
- Shared HW Devices
- Access Control Services
- Shared Data Services
- Management Services

Platform Systems
- Automotive
- Power Distribution
- Lethality
- Logistics
- Platform Sensors
- Crew Protection
Enables Integration means the VDB provides primary data transport and management for the C4ISR/EW systems.
Enables Interfaces means the VDB can provide data transport and/or management interfaces at the system level (e.g. bridge).
The architecture defines sets of *component types* and *system types* which are instantiated in a VDB design.
System Types, Component Types, Interfaces

• Architecture defines
 – System types
 – Component types
 – Interfaces

• Organization of architecture
 – VDB component types
 – C4ISR/EW systems and component types
 – Platform system types
Component and System Interface Types

• Network (messaging) interfaces
 – Data transport interfaces
 • Physical to transport layer protocols: data delivery, QoS, signaling
 – Data interfaces
 • Higher layer protocols: application data format, encoding, encapsulation
 – Management interfaces
 • Configuration & control, health management (status & faults)
 – Access control interfaces
 • Authentication & authorization, data protection
 • Used in conjunction with all network, data, & management interfaces

• Software (application program) interfaces
 – Processor API (e.g. shared processing unit)

• Non-networked electrical interfaces (a few)
 – Device connections: time reference, GPS RX, display, UI devices, etc
VICTORY Architecture Conclusions

• Architecture document defines sets of
 – System types
 – Component types

• Each system and component type has...
 – Functions
 – Set of interfaces
 • Data transport interfaces
 • Data interfaces
 • Management
 • Access control interfaces
 • Non-networked interfaces

• The architecture identifies the interfaces, not the details
• The working groups develop interface specifications (details)
• VSSO matures the specifications into standards

• For more information contact:
 – Grace Xiang, Deputy Director, VSSO
 – qiping.xiang@us.army.mil
 – www.victory-standards.org
VICTORY Training IPT to be established January 2013

- Need government and industry representatives
- Need to develop Embedded Training Interface section to support Fall 2013 release
 - Need to ensure live, virtual, constructive, gaming interfaces are identified

Bi-weekly VICTORY Working Group telecons (AIWG, DBWG, IAWG)

Quarterly face-to-face meetings

Pat Sincebaugh
PEO STRI PM TRADE
407-384-5492
patrick.sincebaugh@us.army.mil